Nucleotide sequence of a cDNA for 1-aminocyclopropane-1-carboxylate synthase from melon fruits.
نویسندگان
چکیده
Ethylene is a plant hormone that has an essential role in fruit ripening (Yang and Hoffman, 1984; Kende, 1993). ACC synthase (S-adenosyl-L-methionine methylethioadenosine-lyase, EC 4.4.1.14), which is encoded by a multigene family, plays a regulatory role in ethylene production. Severa1 genes for ACC synthase have been isolated from tomato (Rottmann et al., 1991), mung bean (Botella et al., 1992, 19931, winter squash (Nakajima et al., 1990; Nakagawa et al., 1991), and Arabidopsis (Liang et al., 1992; Van Der Straeten et al., 1992). Two ACC synthase genes (LE-ACS2 and LE-ACS4, which are identified as a wounding and a ripening inducing gene, respectively) are expressed during ripening of tomato fruits (Olson et al., 1991; Rottmann et al., 1991). An antisense RNA experiment with LEACS2 reduced the levels of mRNAs for LEACS2 and LEACS4 in tomato fruits and caused retardation of initiation of ripening of tomato fruits (Oeller et al., 1991). These results showed that wound-induced ACC synthase also played an important role in the production of ethylene in tomato fruit during ripening. We isolated a cDNA (pMEACS1,2097 bp) for ACC synthase from wounded mesocarp tissue of melon fruits (Cucumis melo L. cv AMS) (Table I). The polypeptide derived from the cDNA in Escherichiu coli had ACC synthase activity. Sequence analysis of this cDNA revealed the presente of an open reading frame of 493 amino acids. This polypeptide contained seven sequences that were conserved among other ACC synthases. pMEACSl showed high homology at the amino acid and nucleotide levels to wound-induced ACC synthase from squash (Nakajima et al., 1990; Sato et al., 1991). RNA blot analysis showed that the level of mRNA for the gene increased in the mesocarp tissue of melon fruits after wounding and also during ripening. Since we could detect cDNA only for MEACSl ACC synthase in a PCR experiment with the mRNA from mesocarp tissue of ripe melon fruits, MEACSl should be the gene that is preferentially expressed during ripening of
منابع مشابه
Cloning of an auxin-responsive 1-aminocyclopropane-1-carboxylate synthase gene (CMe-ACS2) from melon and the expression of ACS genes in etiolated melon seedlings and melon fruits.
Two cDNA fragments (pCMe-ACS2 and 3) encoding auxin-responsive 1-aminocyclopropane-1-carboxylate synthase (ACS; EC.4.4.1.14) have been isolated from melon, and the expression patterns of the genes in etiolated melon seedlings and melon fruit have been determined by RT-PCR analysis. The deduced amino acid sequences of pCMe-ACS2 and 3 were homologous to those of AT-ACS6 and 4, which were auxin-re...
متن کاملIsolation of 1-aminocyclopropane-1-carboxylate synthase gene from Oncidium Gower Ramsey.
A full-length cDNA of a 1-aminocyclopropane-1-carboxylate synthase (ACS) family member from Oncidium, named OnACS1 (GenBank accession No. JQ822087) was cloned and characterized by reverse transcription polymerase chain reaction and rapid amplification of cDNA ends technology. The full-length cDNA was 1586 bp, including a 1308-bp open reading frame, a 105-bp 5' untranslated region (UTR), and 173...
متن کاملIsolation, Cloning and Sequence Analysis of 1-Aminocyclopropane-1-Carboxylate Deaminase Gene from Native Sinorhizobium meliloti
Background: Many plant growth-promoting bacteria including Rhizobia contain the 1-aminocyclopropane-1-carboxylate (ACC) deaminase enzyme that can leave ACC, and thereby lower the level of ethylene in stressed plants. Drought and salinity are the most common environmental stress factors for plants in Iran. Objectives: The main aim of this research was development of bio-fertilizers containing A...
متن کاملNucleotide sequence of a cDNA clone encoding 1-aminocyclopropane-1-carboxylate synthase in mustard (Brassica juncea [L.] Czern & Coss).
Ethylene, a gaseous plant hormone, is involved in regulation of various physiological responses during plant growth and development. These include seed germination, abscission, fruit ripening, and plant senescence (Yang and Hoffman, 1984). Plants also produce high levels of ethylene when they are under environmental stresses or pathogen attacks. In ethylene biosynthesis, the precursor Met is co...
متن کاملIsolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene differentially activated by stress.
1-Aminocyclopropane-1-carboxylate (ACC) oxidase enzyme catalyses the final step in ethylene biosynthesis, converting 1-aminocyclopropane-1-carboxylic acid to ethylene. A cDNA clone encoding an ACC oxidase, ST-ACO3, was isolated from potato (Solanum tuberosum L.) by differential screening of a Fusarium eumartii infected-tuber cDNA library. The deduced amino acid sequence exhibited similarity to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Plant physiology
دوره 107 1 شماره
صفحات -
تاریخ انتشار 1995